Left vertical box line a right vertical box line.

The absolute value or modulus of a real number x, denoted by |x|, is defined as

\left| x \right| = \begin{cases}    x, &\text{if } x \geq 0 \\    -x, &\text{if } x < 0 \end{cases}

The absolute value has the following four fundamental properties (ab are real numbers):

\left( i \right) \left| a \right| \geq 0 \qquad \qquad \qquad \quad \text{Non-negativity}\\\\ \left( ii \right) \left| a \right| = 0 \iff a=0 \quad \text{Positive-definiteness}\\\\ \left( iii \right) \left| ab \right| = \left| a \right| \left| b \right| \qquad \;\;\;\;\;\, \text{Multiplicativity}\\\\ \left( iv \right) \left| a+b \right| \leq \left| a \right| + \left| b \right| \qquad \text{Subadditivity (triangle inequality)}

The graph of the function y=|x| is shown below.

A Cartesian coordinate system, where the horizontal axe is labeled/labelled x and the vertical axe is labeled/labelled y. One line segment bisects the first quadrant and other line segment bisects the second quadrant. The line segments are labeled/labelled y equals left vertical box line x right vertical box line..

Share this post

Leave a Reply

Trending

Discover more from ENIGMATH

Subscribe now to keep reading and get access to the full archive.

Continue reading